| Menoliya University | Year 2014 |
| :--- | :--- |
| Faculty © Engineering | Department: Civil |
| Shebin ly-Kom | Subject: Soil Mechanic |
|  | Time Allowed: 3 hours |
|  | Date :22/1/20/4 |
|  | Total Marks :90 |

Tables and charts Allowed

## Answer all the following Orestions:-

Q. 1 (a) - A high building 13-stores was built in Shebin El-kom adjacent to another building consists of 6 stores only. What is the effect of 13 - stores building on the ground underneath the 6 stores building. If the 6 -storey was demolished and a new one of 10 - storey was built, what is the change which will occur Explain.
(b) - i - Why the coller is used in compaction test.
ii - Nane two basic devices ( as mentioned in lecture) used always in soil mechanics lab.
iii - Engireering judement is nceded in all phases of engineering practice, but perhaps even more so in Soil Mechanices. Explain why
Q. 2 (a) - Draw flow net carefully and find $q / m$ width, $k=30 \times 10^{-4} \mathbf{~ c m} / \mathrm{s}$. There ia a $5-\mathrm{m}$ cutofi wall as shown in Higure below.

(b) - Define the pressure bulbs and show $\mathrm{n} \sim$ they can be used in deciding depth of borings.
(c) - Explain and prove seepage velocity.
Q. 3 (a) - The dry density of a sandy soil sample is $1.85 \mathrm{gm} / \mathrm{cm}^{3}$. The maximum and minimum dry densities for this type of soil is $1.90 \mathrm{gm} / \mathrm{cm}^{3}$ and $1.40 \mathrm{gm} / \mathrm{cm}^{3}$ respectively Find the relative density of this sample.
(b)- A soil has been compacted to a bulk density of $2.15 \mathrm{gm} / \mathrm{cm}^{3}$ and a water content of $\mathbf{1 2 \%}$. The value of $\mathrm{G}_{\mathrm{S}}=\mathbf{2 . 6 5}$ Calculate the dry density, void ratio and degree of saturation.
(15 Degrees)
Q. 4 (a)-Define the two methods used for piping alleviation.
(b)- A sheet-pile wall is driven to a depth of 6 m into permeable soil which extends to a depth of 13.5 m below ground level. Below this, there is an impermeable stratum. There is a depth of 4.5 m on one side of the sheet pile wall. Make a neat sketch of the flow net and determine the approximate seepage under the sheet pile wall in $\mathrm{m}^{3}$ per day, taking the permeability of the soil as $6 \times 10^{-3} \mathrm{~mm} / \mathrm{sec}$.
(Assume soil density of $1900 \mathrm{~kg} / \mathrm{m}^{3}$ )
Find the critical hydraulic gradient ic. show ( using the flow net) if piping in front of the sheet piling is likely to occur or not.

(21 Degrees)
Q. 5 (a)- The water table is lowered from a depth of 10 ft . to a depth of 20 ft . in a deposite of silt. All the silt is saturated, even after the water table is lowered. Its water content is $26 \%$. Estimate the increase in effective pressure at a depth of 34 ft on account of lowering the water table, $\gamma_{w}=26.4 \mathrm{Ib} / \mathrm{ft}^{3}$.
(b)- Determine the vertical stress distribution at mid - depth of the clay layer along ... A-A and B-B of the building shown in the figure.


